Published on Wed Sep 02 2020

Drifting Assemblies for Persistent Memory

Kalle Kossio, F. Y., Goedeke, S., Klos, C., Memmesheimer, R.-M.

In a standard model, memories are represented by assemblies of strongly interconnected neurons. For faithful storage these assemblies are assumed to consist of the same neurons over time. Here we propose a contrasting memory model with complete temporal remodeling of assemblies, based on experimentally observed changes of connections and neural representations.

2
18
39
Abstract

Change is ubiquitous in living beings. In particular, the connectome and neural representations can change. Nevertheless behaviors and memories often persist over long times. In a standard model, memories are represented by assemblies of strongly interconnected neurons. For faithful storage these assemblies are assumed to consist of the same neurons over time. Here we propose a contrasting memory model with complete temporal remodeling of assemblies, based on experimentally observed changes of connections and neural representations. The assemblies drift freely as spontaneous synaptic turnover or random activity induce neuron exchange. The gradual exchange allows activity dependent and homeostatic plasticity to conserve the representational structure and keep inputs, outputs and assemblies consistent. This leads to persistent memory. Our findings explain recent experimental results on the temporal evolution of fear memory representations and suggest that memory systems need to be understood in their completeness as individual parts may constantly change.