Published on Wed Sep 29 2021

Cis-regulatory changes in locomotor genes are associated with the evolution of burrowing behavior

Hu, C., York, R., Metz, H., Bedford, N., Fraser, H., Hoekstra, H.

Divergence in many morphological traits has been linked, at least in part, to cis-regulatory changes in gene expression. We found that several thousand genes were differentially expressed between the two sister species of Peromyscus mice.

2
6
10
Abstract

How evolution modifies complex, innate behaviors is largely unknown. Divergence in many morphological traits has been linked, at least in part, to cis-regulatory changes in gene expression, a pattern also observed in some behaviors of recently diverged populations. Given this, we compared the gene expression in the brains of two interfertile sister species of Peromyscus mice, including allele-specific expression (ASE) of their F1 hybrids, that show large and heritable differences in burrowing behavior. Because cis- regulation may contribute to constitutive as well as activity-dependent gene expression, we also captured a molecular signature of burrowing circuit divergence by quantifying gene expression in mice shortly after burrowing. We found that several thousand genes were differentially expressed between the two sister species regardless of behavioral context, with several thousand more showing behavior-dependent differences. Allele- specific expression in F1 hybrids showed a similar pattern, suggesting that much of the differential expression is driven by cis-regulatory divergence. Genes related to locomotor coordination showed the strongest signals of lineage-specific selection on burrowing- induced cis-regulatory changes. By comparing these candidate genes to independent quantitative trait locus (QTL) mapping data, we found that the closest QTL markers to these candidate genes are associated with variation in burrow shape, demonstrating an enrichment for candidate locomotor genes near segregating causal loci. Together, our results provide insight into how cis-regulated gene expression can depend on behavioral context as well as how this dynamic regulatory divergence between species can be integrated with forward genetics to enrich our understanding of the genetic basis of behavioral evolution.