Published on Fri Oct 01 2021

Nup358 regulates remodelling of ER-mitochondrial contact sites and autophagy

Kalarikkal, M., Saikia, R., Varshney, P., Dhamale, P., Majumdar, A., Joseph, J.

contact sites between ER and mitochondria regulate several cellular processes including inter-organelle lipid transport, calcium homeostasis and autophagy. The mechanisms that regulate the dynamics and functions of these contact sites remain unresolved. We show that annulate lamellae (AL), a relatively unexplored

4
4
16
Abstract

The contact sites between ER and mitochondria regulate several cellular processes including inter-organelle lipid transport, calcium homeostasis and autophagy. However, the mechanisms that regulate the dynamics and functions of these contact sites remain unresolved. We show that annulate lamellae (AL), a relatively unexplored subcellular structure representing subdomains of ER enriched with a subset of nucleoporins, are present at ER-mitochondria contact sites (ERMCS). Depletion of one of the AL-resident nucleoporins, Nup358, results in increased contacts between ER and mitochondria. Mechanistically, Nup358 modulates ERMCS dynamics by restricting mTORC2/Akt signalling. Our results suggest that growth factor-mediated remodelling of ERMCS depends on a reciprocal binding of Nup358 and mTOR to the ERMCS tethering complex consisting of VAPB and PTPIP51. Furthermore, Nup358 also interacts with IP3R, an ERMCS-enriched Ca2+ channel, and controls Ca2+ release from the ER. Consequently, depletion of Nup358 leads to elevated cytoplasmic Ca2+ and autophagy via activation of Ca2+/CaMKK2/AMPK axis. Our study thus uncovers a novel role for AL, particularly for Nup358, in regulating mTORC2-mediated ERMCS remodelling and Ca2+-directed autophagy, possibly via independent mechanisms.